Simultaneous regeneration of articular cartilage and subchondral bone induced by spatially presented TGF-beta and BMP-4 in a bilayer affinity binding system.

نویسندگان

  • Tali Re'em
  • Frank Witte
  • Elmar Willbold
  • Emil Ruvinov
  • Smadar Cohen
چکیده

Subchondral defect repair is a multitask challenge requiring the simultaneous regeneration of cartilage and bone. Herein, we describe the features of a hydrogel system designed to simultaneously induce the endogenous regeneration of hyaline cartilage and subchondral bone. The system was constructed as two layers, spatially presenting the chondroinductive transforming growth factor-β1 (TGF-β1) in one layer and the osteoinductive bone morphogenetic protein-4 (BMP-4) in a second layer, via affinity binding to the matrix. Human mesenchymal stem cells seeded in the bilayer system differentiated into chondrocytes and osteoblasts in the respective layers, confirming the spatial presentation and prolonged activity of TGF-β1 and BMP-4. Administration of the bilayer system with affinity-bound TGF-β1 and BMP-4 (with no cells) into a subchondral defect in rabbits induced endogenous regeneration of articular cartilage and the subchondral bone underneath within 4weeks. Cartilage extracellular matrix proteoglycans were found in the top layer, with no mineralization, whereas the layer underneath consisted of newly formed woven bone. The results indicate that stem cells migrating into the defect are able to sense the biological cues spatially presented in the hydrogel and respond by differentiation into the appropriate cell lineage. The strategy has a real translational potential for repairing osteochondral defects in humans as it is acellular and can be implanted via a minimally invasive method.

برای دانلود رایگان متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

Roles of TGF-beta 1 signaling in the development of osteoarthritis.

Osteoarthritis (OA) is a degenerative joint disorder characterized by the destruction of articular cartilage, subchondral bone and other joint tissues. Although multiple growth factors and cytokines have been shown to be involved in articular cartilage degeneration and subchondral bone destruction, which eventually leads to OA, the molecular mechanisms underlying the pathogenesis of OA are larg...

متن کامل

Transforming growth factor beta superfamily members: role in cartilage modeling.

Normal and abnormal extracellular matrix turnover is thought to result, in part, from the balance in the expression of metalloproteinases and tissue inhibitors of metalloproteinases (TIMPs). The clinical manifestations of an imbalance in these relationships are evident in a variety of pathologic states, including osteoarthritis, deficient long-bone growth, rheumatoid arthritis, tumor invasion, ...

متن کامل

Transforming Growth Factor-β1 Preserves Bovine Nasal Cartilage against Degradation Induced by Interleukin-1α in Explant Culture

Background and Aims: Chondrocytes and their differentiation play a central role in joint diseases. Effect of the transforming growth factor (TGF)-β1 on chondrocyte characteristics and differentiation is not clearly understood. This study was undertaken to investigate the effects of TGF-β1 on tissue characteristics and morphology of chondrocytes against degradation induced by interleuk...

متن کامل

Covalently conjugated transforming growth factor-β1 in modular chitosan hydrogels for the effective treatment of articular cartilage defects.

Approaches to control precisely growth factor presentation to a tissue defect in a sustained fashion are of increasing interest for a number of complex tissue engineering applications. Although transforming growth factor beta-1 (TGF-β1) plays a key role in promoting chondrogenesis, the therapeutic use of TGF-β1 is limited by its inherent protein instability, requiring high amounts of the protei...

متن کامل

Modulation of TGF-beta signaling by proinflammatory cytokines in articular chondrocytes.

OBJECTIVE The normal structure and function of articular cartilage are the result of a precisely balanced interaction between anabolic and catabolic processes. The transforming growth factor-beta (TGF-beta) family of growth factors generally exerts an anabolic or repair response; in contrast, proinflammatory cytokines such as interleukin 1 beta (IL-1beta) and tumor necrosis factor-alpha (TNF-al...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

عنوان ژورنال:
  • Acta biomaterialia

دوره 8 9  شماره 

صفحات  -

تاریخ انتشار 2012